ACT FORMULA SHEET

MATH

NUMBER AND QUANTITY

Sequences

Sequence with a constant of c: arithmetic sequence: an = a1 + c(n – 1) geometric sequence: an = a1(c)n – 1

Logarithms

 $\log_a b = c \rightarrow a^c = b$

Rates

distance = speed × time variation: quantity = rate × time

ALGEBRA

Linear Graphs

slope-intercept formula: y = mx +b m = slope = (y1 - y2) / (x1 - x2) b = y-intercept = (0,b) distance formula: $\sqrt{[(y1 - y2)^2 + (x1 - x2)^2]}$ midpoint formula: midpoint = [(x1 + x2)/2, (y1 + y2)/2]

Quadratics

FOIL (First, Outer, Inner, Last): (a + b)(c + d) = ac + ad + bc + bdquadratic formula: X= $-b \pm \sqrt{b^2 - 4ac}$ discriminant: $b^2 - 4ac$

lf . . .

- discriminant > $0 \rightarrow 2$ real solutions
- discriminant = $0 \rightarrow 1$ real solution
- discriminant < 0 \rightarrow no real solutions

FUNCTIONS

Function Notation

fog(x) = f(g(x))note: this is different from fg(x), which is $f(x) \times g(x)$

Trigonometry on the Coordinate Plane π radians = 180°

STATISTICS AND PROBABILITY

Percents

percent = part / whole × 100%
% symbol = divide by 100
a% of b = a/100 × b = a × b/100
percent change = change / original

Statistics

average (mean) = sum of terms / number of terms median = middle number (or average of 2 middle numbers) mode = most common number range = biggest – smallest

Probability and Counting Techniques

probability = number of desired terms / total number of terms P(event happens) + P(event doesn't happen) = 1 P(A and B) = P(A) × P(B)

GEOMETRY

Lines and Angles

supplementary angles add to 180° complementary angles add to 90° vertical angles are congruent

Triangles

angles of a triangle add to 180° area of a triangle = ½ × base × height Pythagorean theorem: a² + b² = c²

45 : 45 : 90 triangle ratio: x : x : x√2 30 : 60 : 90 triangle ratio: x : x√3 : 2x

Polygons

trapezoid area = average of bases × height = $(b_1 + b_2)/2 \times h$ perimeter = sum of sides sum of angles in n-sided figure = $(n - 2) \times 180^{\circ}$ area of a rectangle = length × width area of a parallelogram = base × height

Circles and Parabolas

circle arc length = central angle / 360° × circumference circle sector area = central angle / 360° × area area of circle = πr^2 circumference of circle = $2\pi r$ diameter of circle = 2r

radius = r $(x - h)^2 + (y - k)^2 = r^2$ center of circle = (h, k) Vertex form for a parabola: $y = a(x - h)^2 + k$ vertex = (h, k) axis of symmetry: x = h

3D Figures

surface area of rectangular prism: 2(length × width + length × height + width × height)

volume of rectangular prism: V = lwh volume of right cylinder: V = $\pi r^2 h$

Triangles and Trigonometry

SOH-CAH-TOA:

Sine (sin)	Cosine (cos)	Tangent (tan)
opposite hypotenuse	_adjacent_ hypotenuse	opposite adjacent
3 5	4 5	$\frac{3}{4}$

sin(x) = opposite / hypotenuse cos(x) = adjacent / hypotenuse tan(x) = opposite / adjacent $sin^{2}(x) + cos^{2}(x) = 1$ sin(x) = cos(90 - x)cos(x) = sin(90 - x)

